Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12395-12400, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38682244

RESUMEN

Quantitative understanding of the chemisorption on single-atom catalysts (SACs) by their electronic properties is crucial for the catalyst design. However, the physical mechanism is still under debate. Here, the CO catalytic oxidation on single transition metal (i.e., Sc, Ti, V, Cr, Mn, Fe, Co, Ni) dopants is used as a theoretical model to explore the correlations between the characteristics of electronic structures and the chemisorption on SACs. For these metal dopants, their atomic d orbitals form several nondegenerate and localized electronic states that are found to be selectively coupled with the π* orbital of the adsorbed O2, which we defined as selective orbital coupling. Based on the selective orbital coupling, we find that the alignment between the selected d state and the π* state determines the bond strength, regardless of the electron occupation number of the selected d states; the electron transfer to form M-O bonding can be provided by the support. Such electron transfer can be related with the electronic metal-support interaction. We attribute the origin of the chemisorption mechanism to the coexistence of the localized orbital of the single transition metal and the continuous energy band of the Au support. Finally, we illustrate how this mechanism dominates the variation trend of the reaction barriers. Our results unravel a fundamental adsorption mechanism in SAC systems.

2.
Nano Lett ; 24(9): 2689-2697, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285690

RESUMEN

Simulating the behavior of metal nanoparticles on supports is crucial for boosting their catalytic performance and various nanotechnology applications; however, such simulations are limited by the conflicts between accuracy and efficiency. Herein, we introduce a multiscale modeling strategy to unveil the morphology of Ru supported on pristine and N-doped graphene. Our multiscale modeling started with the electronic structures of a supported Ru single atom, revealing the strong metal-support interaction around pyridinic nitrogen sites. To determine the stable configurations of Ru2-13 clusters on three different graphene supports, global energy minimum searches were performed. The sintering of the global minimum Ru13 clusters on supports was further simulated by ab initio molecular dynamics (AIMD). The AIMD data set was then collected for deep potential molecular dynamics to study the melting of Ru nanoparticles. This study presents comprehensive descriptions of carbon-supported Ru and develops modeling approaches that bridge different scales and can be applied to various supported nanoparticle systems.

5.
Chem Mater ; 35(10): 3801-3814, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251101

RESUMEN

One of the great advantages of organic-inorganic metal halides is that their structures and properties are highly tuneable and this is important when optimizing materials for photovoltaics or other optoelectronic devices. One of the most common and effective ways of tuning the electronic structure is through anion substitution. Here, we report the inclusion of bromine into the layered perovskite [H3N(CH2)6NH3]PbBr4 to form [H3N(CH2)6NH3]PbBr4·Br2, which contains molecular bromine (Br2) intercalated between the layers of corner-sharing PbBr6 octahedra. Bromine intercalation in [H3N(CH2)6NH3]PbBr4·Br2 results in a decrease in the band gap of 0.85 eV and induces a structural transition from a Ruddlesden-Popper-like to Dion-Jacobson-like phase, while also changing the conformation of the amine. Electronic structure calculations show that Br2 intercalation is accompanied by the formation of a new band in the electronic structure and a significant decrease in the effective masses of around two orders of magnitude. This is backed up by our resistivity measurements that show that [H3N(CH2)6NH3]PbBr4·Br2 has a resistivity value of one order of magnitude lower than [H3N(CH2)6NH3]PbBr4, suggesting that bromine inclusion significantly increases the mobility and/or carrier concentration in the material. This work highlights the possibility of using molecular inclusion as an alternative tool to tune the electronic properties of layered organic-inorganic perovskites, while also being the first example of molecular bromine inclusion in a layered lead halide perovskite. By using a combination of crystallography and computation, we show that the key to this manipulation of the electronic structure is the formation of halogen bonds between the Br2 and Br in the [PbBr4]∞ layers, which is likely to have important effects in a range of organic-inorganic metal halides.

6.
Faraday Discuss ; 243(0): 148-163, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37057657

RESUMEN

N2 dissociative adsorption is commonly the rate-determining step in thermal ammonia synthesis. Herein, we performed density functional theory (DFT) calculations to understand the N2 dissociation mechanism on models of unsupported Ru(0001) terraces, Ru B5 sites, and polar MgO(111)-supported Ru8 cluster mimicking a B5 site geometry, denoted (Ru8(B5-like)/MgO(111)). The activation energy of N2 dissociative adsorption on the Ru8(B5-like)/MgO(111) model (Ea = 0.33 eV) is much lower than that on the unsupported Ru(0001) terrace (Ea = 1.74 eV) and Ru B5 (Ea = 0.62 eV) models. The lower N2 dissociation barrier on Ru B5 sites is facilitated by the enhanced σ donation and π* back-donation between N2(σ, π*) and Ru(d) orbitals resulting in the stronger activation of the molecular side-on N2* dissociation precursor. The Ru8(B5-like)/MgO(111) also exhibits enhanced σ donation because of the B5-like cluster geometry. Furthermore, the Ru cluster of the bare Ru8(B5-like)/MgO(111) model is positively charged. This induced an unusual π donation from N2(π) to Ru(d) orbitals as revealed by analyses of the density of states and partial charge densities. The combined σ and π donation resulted in an increased synergistic π* back-donation. The total interactions between N2(σ, π, π*) and Ru(d) resulted in an overall electron transfer to the adsorbed N2 from the Ru atoms in the B5-like site with no direct involvement of the MgO(111) substrate. Analyses of bond stretching vibrations and bond lengths show that the N2(σ, π, π*) and Ru(d) interactions lead to a weaker N-N bond and stronger Ru-N bonds. These correspond to a lower barrier of N2 dissociation on the Ru8(B5-like)/MgO(111) model, where the highest red-shift of N-N vibration and the longest N-N bond length were observed after side-on N2* adsorption. These results demonstrate that an electron-deficient Ru catalyst are not always inhibited from donating electrons to adsorbed N2. Rather, this study shows that the electron deficiency of Ru can promote π* back-donation and N2 activation. These new insights may therefore open new avenues to design supported Ru catalysts for nitrogen activation.

7.
ACS Nano ; 17(7): 6555-6564, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36951422

RESUMEN

Defect engineering is of great interest to the two-dimensional (2D) materials community. If nonmagnetic transition-metal dichalcogenides can possess room-temperature ferromagnetism (RTFM) induced by defects, then they will be ideal for application as spintronic materials and also for studying the relation between electronic and magnetic properties of quantum-confined structures. Thus, in this work, we aimed to study gamma-ray irradiation effects on MoS2, which is diamagnetic in nature. We found that gamma-ray exposure up to 9 kGy on few-layered (3.5 nm) MoS2 films induces an ultrahigh saturation magnetization of around 610 emu/cm3 at RT, whereas no significant changes were observed in the structure and magnetism of bulk MoS2 (40 nm) films even after gamma-ray irradiation. The RTFM in a few-layered gamma-ray irradiated sample is most likely due to the bound magnetic polaron created by the spin interaction of Mo 4d ions with trapped electrons present at sulfur vacancies. In addition, density functional theory (DFT) calculations suggest that the defect containing one Mo and two S vacancies is the dominant defect inducing the RTFM in MoS2. These DFT results are consistent with Raman, X-ray photoelectron spectroscopy, and ESR spectroscopy results, and they confirm the breakage of Mo and S bonds and the existence of vacancies after gamma-ray irradiation. Overall, this study suggests that the occurrence of magnetism in gamma-ray irradiated MoS2 few-layered films could be attributed to the synergistic effects of magnetic moments arising from the existence of both Mo and S vacancies as well as lattice distortion of the MoS2 structure.

8.
Adv Sci (Weinh) ; 10(11): e2207109, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36752398

RESUMEN

This study demonstrates the intercalation of single-atom Ni (NiSA ) substantially reduces the reaction activity of Ni oxide supported Pd nanoparticle (NiO2 /Pd) in the oxygen reduction reaction (ORR). The results indicate the transition states kinetically consolidate the adsorption energy for the chemisorbed O and OH species on the ORR activity. Notably, the NiO2 /Ni1 /Pd performs the optimum ORR behavior with the lowest barrier of 0.49 eV and moderate second-step barrier of 0.30 eV consequently confirming its utmost ORR performance. Through the stepwise cross-level demonstrations, a structure-Eads -ΔE correspondence for the proposed NiO2 /Nin /Pd systems is established. Most importantly, such a correspondence reveals that the electronic structure of heterogeneous catalysts can be significantly differed by the segregation of atomic clusters in different dimensions and locations. Besides, the doping-depth effect exploration of the NiSA in the NiO2 /Pd structure intrinsically elucidates that the Ni atom doping in the subsurface induces the most fruitful NiSA /PdML synergy combining the electronic and strain effects to optimize the ORR, whereas this desired synergy diminishes at high Pd coverages. Overall, the results not only rationalize the variation in the redox properties but most importantly provides a precision evaluation of the process window for optimizing the configuration and composition of bimetallic catalysts in practical experiments.

9.
Nat Commun ; 14(1): 647, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746965

RESUMEN

Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.

10.
Nano Lett ; 22(22): 9071-9076, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36342418

RESUMEN

Surface diffusion is intimately correlated with crystal orientation and surface structure. Fast surface diffusion accelerates phase transformation and structural evolution of materials. Here, through in situ transmission electron microscopy observation, we show that a copper nanowire with dense nanoscale coherent twin-boundary (CTB) defects evolves into a zigzag configuration under electric-current driven surface diffusion. The hindrance at the CTB-intercepted concave triple junctions decreases the effective surface diffusivity by almost 1 order of magnitude. The energy barriers for atomic migration at the concave junctions and different faceted surfaces are computed using density functional theory. We proposed that such a stable zigzag surface is shaped not only by the high-diffusivity facets but also by the stalled atomic diffusion at the concave junctions. This finding provides a defect-engineering route to develop robust interconnect materials against electromigration-induced failures for nanoelectronic devices.

11.
ACS Appl Mater Interfaces ; 14(46): 52035-52045, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36346965

RESUMEN

Ni-containing heteropolyvanadate, Na6[NiV14O40], was synthesized for the first time to be applied in high-energy lithium storage applications as a negative electrode material. Na6[NiV14O40] can be prepared via a facile solution process that is suitable for low-cost mass production. The as-prepared electrode provided a high capacity of approximately 700 mAh g-1 without degradation for 400 cycles, indicating excellent cycling stability. The mechanism of charge storage was investigated using operando X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), transition X-ray microscopy (TXM), and density functional theory (DFT) calculations. The results showed that V5+ was reduced to V2+ during lithiation, indicating that Na6[NiV14O40] is an insertion-type material. In addition, Na6[NiV14O40] maintained its amorphous structure with negligible volume expansion/contraction during cycling. Employed as the negative electrode in a lithium-ion battery (LIB), the Na6[NiV14O40]//LiFePO4 full cell had a high energy density of 300 W h kg-1. When applied in a lithium-ion capacitor, the Na6[NiV14O40]//expanded mesocarbon microbead full cell displayed energy densities of 218.5 and 47.9 W h kg-1 at power densities of 175.7 and 7774.2 W kg-1, respectively. These findings reveal that the negative electrode material Na6[NiV14O40] is a promising candidate for Li-ion storage applications.

12.
J Phys Condens Matter ; 34(21)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189606

RESUMEN

The structural, energetic and electronic structure properties of stoichiometric and nonstoichiometric slab models of bare MgO(111) and Ru/MgO(111) with different coverages of 1 monolayer (ML), 1/4 ML and 1/16 ML have been investigated using spin-polarized density functional theory. Calculated results show that the structural, energetic properties and charge transfer of both bare MgO(111) and Ru/MgO(111) are independent of the stoichiometric and nonstoichiometric models. In contrast, their density of state (DOS) profiles demonstrate metal and half-metal characters for the stoichiometric and nonstoichiometric bare MgO(111) surfaces, respectively. The Ru-O orbital coupling characters of these two types of Ru/MgO(111) models are also different. This work indicates that for a polar surface model, the calculated features and trends of the structural and energetic properties, charge distributions and magnetic structures might not be affected by their stoichiometric and nonstoichiometric models; however, the detailed features of their DOS features would strongly depend on the models constructed.

13.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055277

RESUMEN

High-performance p-type thin-film transistors (pTFTs) are crucial for realizing low-power display-on-panel and monolithic three-dimensional integrated circuits. Unfortunately, it is difficult to achieve a high hole mobility of greater than 10 cm2/V·s, even for SnO TFTs with a unique single-hole band and a small hole effective mass. In this paper, we demonstrate a high-performance GeSn pTFT with a high field-effect hole mobility (µFE), of 41.8 cm2/V·s; a sharp turn-on subthreshold slope (SS), of 311 mV/dec, for low-voltage operation; and a large on-current/off-current (ION/IOFF) value, of 8.9 × 106. This remarkably high ION/IOFF is achieved using an ultra-thin nanosheet GeSn, with a thickness of only 7 nm. Although an even higher hole mobility (103.8 cm2/V·s) was obtained with a thicker GeSn channel, the IOFF increased rapidly and the poor ION/IOFF (75) was unsuitable for transistor applications. The high mobility is due to the small hole effective mass of GeSn, which is supported by first-principles electronic structure calculations.

14.
Small ; 18(5): e2104844, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34825478

RESUMEN

Single-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single-atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical-mediated pathway like most of the reported nanozymes. Their positively charged single-atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2 O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection.


Asunto(s)
Oxidorreductasas , Peroxidasa , Carbono/química , Dominio Catalítico , Peroxidasas
15.
J Am Chem Soc ; 143(24): 9105-9112, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34047552

RESUMEN

Hydrogen spillover is the phenomenon where a hydrogen atom, generated from the dissociative chemisorption of dihydrogen on the surface of a metal species, migrates from the metal to the catalytic support. This phenomenon is regarded as a promising avenue for hydrogen storage, yet the atomic mechanism for how the hydrogen atom can be transferred to the support has remained controversial for decades. As a result, the development of catalytic support for such a purpose is only limited to typical reducible oxide materials. Herein, by using a combination of in situ spectroscopic and imaging technique, we are able to visualize and observe the atomic pathway for which hydrogen travels via a frustrated Lewis pair that has been constructed on a nonreducible metal oxide. The interchangeable status between the hydrogen, proton, and hydride is carefully characterized and demonstrated. It is envisaged that this study has opened up new design criteria for hydrogen storage material.

16.
ACS Omega ; 6(14): 9692-9699, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33869949

RESUMEN

In this study, electronic structure calculations and Bader charge analysis have been completed on the inverse, intermediate, and normal spinel structures of NiCo2O4 in both primitive and conventional cells, using density functional theory with Hubbard U correction. Three spinel structures have been computed in the primitive cell, where the fully inverse spinel, 50% intermediate spinel, and normal spinel can be acquired by swapping Ni and Co atoms on tetrahedral and octahedral sites. Furthermore, NiCo2O4 with different degrees of inversion in the conventional cells was also investigated, along with their doping energies. Confirmed by the assigned formal charges, magnetic moments, and decomposed density of state, our results suggest that the electronic properties of Ni and Co on the tetrahedral site can be altered by swapping Ni and Co atoms, whereas both Ni and Co on the octahedral site are uninfluenced. A simple and widely used model, crystal field theory, is also compared with our calculations and shows a consistent prediction about the cation distribution in NiCo2O4. This study analyzes the correlation between cation arrangements and formal charges, which could potentially be used to predict the desired electronic properties of NiCo2O4 for various applications.

17.
Molecules ; 25(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233774

RESUMEN

In this paper, a modified Cyclotriveratrylene was synthesized and linked to a branched Polyethylenimine, and this unique polymeric material was subsequently examined as a potential supramolecular carrier for Doxorubicin. Spectroscopic analysis in different solvents had shown that Doxorubicin was coordinated within the hollow-shaped unit of the armed Cyclotriveratrylene, and the nature of the host-guest complex revealed intrinsic Van der Waals interactions and hydrogen bonding between the host and guest. The strongest interaction was detected in water because of the hydrophobic effect shared between the aromatic groups of the Doxorubicin and Cyclotriveratrylene unit. Density functional theory calculations had also confirmed that in the most stable coordination of Doxorubicin with the cross-linked polymer, the aromatic rings of the Doxorubicin were localized toward the Cyclotriveratrylene core, while its aliphatic chains aligned closer with amino groups, thus forming a compact supramolecular assembly that may confer a shielding effect on Doxorubicin. These observations had emphasized the importance of supramolecular considerations when designing a novel drug delivery platform.


Asunto(s)
Doxorrubicina/química , Portadores de Fármacos/química , Sustancias Macromoleculares/química , Compuestos Policíclicos/química , Polietileneimina/química , Reactivos de Enlaces Cruzados/química , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Espectroscopía de Resonancia Magnética , Modelos Teóricos , Conformación Molecular , Estructura Molecular , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier
18.
Sci Adv ; 6(1): eaay4289, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31922009

RESUMEN

The free-standing Au20 cluster has a unique tetrahedral shape and a large HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gap of around 1.8 electron volts. The "magic" Au20 has been intensively used as a model system for understanding the catalytic and optical properties of gold nanoclusters. However, direct real-space ground-state characterization at the atomic scale is still lacking, and obtaining fundamental information about the corresponding structural, electronic, and dynamical properties, is challenging. Here, using cluster-beam deposition and low-temperature scanning tunneling microscopy, atom-resolved topographic images and electronic spectra of supported Au20 clusters are obtained. We demonstrate that individual size-selected Au20 on ultrathin NaCl films maintains its pyramidal structure and large HOMO-LUMO gap. At higher cluster coverages, we find sintering of the clusters via Smoluchowski ripening to Au20n agglomerates. The evolution of the electron density of states deduced from the spectra reveals gap reduction with increasing agglomerate size.

19.
Sci Rep ; 9(1): 12762, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484973

RESUMEN

In this report, the substitution of the oxygen group (=O) of Tetraphenylcyclopentadienone with =CR2 group (R = methyl ester or nitrile) was found to have tuned the electro-optical properties of the molecule. Although both groups are electrons withdrawing in nature, their absorption from UV-vis spectra analysis was observed to have been blue-shifted by methyl ester substitution and red-shifted by nitrile substitution. Interestingly, these substitutions helped to enhance the overall intensity of emission, especially in the context of methyl ester substitution whereby the emission was significantly boosted at higher concentrations due to hypothesized restrictions of intramolecular motions. These observations were explained through detailed descriptions of the electron withdrawing capability and steric properties of the substituents on the basis of density functional theory calculations.

20.
J Phys Chem Lett ; 10(14): 3998-4002, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31260314

RESUMEN

Scanning tunneling microscopy and spectroscopy experiments under ultrahigh vacuum and low-temperature conditions have been performed on water-intercalated graphene on Pt(111). We find that the confined water layer, with a thickness around 0.35 nm, induces a strong hole doping in graphene, i.e., the Dirac point locates at round 0.64 eV above the Fermi level. This can be explained by the presence of a single "puckered bilayer" of ice-Ih, which has not been experimentally found on bare Pt(111), being confined in between graphene and Pt(111) surface. Moreover, the water intercalation makes graphene highly decoupled from the substrate, allowing us to reveal the intrinsic graphene phonons and double Rydberg series of even and odd symmetry image-potential states. Our work not only demonstrates that the electronic properties of graphene can be tuned by the confined water layer between graphene and the substrate, but also provides a generally applicable method to study the intrinsic properties of graphene as well as of other supported two-dimensional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...